Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2846109.v1

ABSTRACT

Neurological complications occur in a significant proportion of COVID-19 cases. In order to identify key biomarkers, we measured brain injury markers, inflammatory mediators, and autoantibodies in 203 participants admitted to hospital for management of COVID-19; 111 provided acute sera (1-11 days post admission) and 56 with COVID-19-associated neurological diagnoses provided convalescent sera (up to76 weeks post admission). Compared to 60 controls, brain injury biomarkers (total-Tau, GFAP, NfL, UCH-L1) were increased in acute sera, significantly more so for NfL and UCH-L1, in participants with altered consciousness. Total-Tau (tTau) and NfL remained elevated in convalescent sera, particularly following cerebrovascular and neuroinflammatory disorders. Acutely, inflammatory mediators (including IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) were higher in participants with altered consciousness and correlated with brain injury biomarker levels. Inflammatory mediators were lower in convalescent sera than acute sera. Levels of CCL2, CCL7, IL-1RA, IL-2Rα, M-CSF, SCF, IL-16 and IL-18 in individual participants correlated with tTau levels even at later time points. When compared to acute COVID-19 patients with a normal Glasgow Coma Scale score (GCS), network analysis showed significantly altered immune responses in patients with acute alteration of consciousness, and in convalescent patients who had suffered an acute neurological complication. The frequency and range of autoantibodies did not associate with neurological disorders. However, autoantibodies against specific antigens were more frequent in patients with altered consciousness in the acute phase (including MYL7, UCH-L1, GRIN3B, and DDR2), and in patients with neurological complications in the convalescent phase (including MYL7, GNRHR, and HLA antigens). In a novel low-inoculum mouse model of SARS-CoV-2, while viral replication was only consistently seen in mouse lungs, inflammatory responses were seen in both brain and lungs, with significant increases in CCL4, IFNγ, IL-17A, and microglial reactivity in the brain. Neurological injury is common in the acute phase of COVID-19 and we found brain injury markers persist during convalescence and may be driven by a para-infectious process involving a dysregulated host response.


Subject(s)
COVID-19 , Brain Diseases , Cerebrovascular Disorders , Nervous System Diseases , Coma , Central Nervous System Diseases
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.14.21249801

ABSTRACT

Severe Covid-19 is associated with elevated plasma Factor V (FV) and increased risk of thromboembolism. We report that neutrophils, T regulatory cells (Tregs), and monocytes from patients with severe Covid-19 express FV, and expression correlates with T cell lymphopenia. In vitro full length FV, but not FV activated by thrombin cleavage, suppresses T cell proliferation. Increased and prolonged FV expression by cells of the innate and adaptive immune systems may contribute to lymphopenia in severe Covid-19. Activation by thrombin destroys the immunosuppressive properties of FV. Anticoagulation in Covid-19 patients may have the unintended consequence of suppressing the adaptive immune system.


Subject(s)
COVID-19
3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3724855

ABSTRACT

Background: The COVID-19 pandemic continues to grow at an unprecedented rate. Healthcare workers (HCWs) are at higher risk of SARS-CoV-2 infection than the general population but risk factors for HCW infection are not well described.Methods: We conducted a prospective sero-epidemiological study of HCWs at a UK teaching hospital using a SARS-CoV-2 immunoassay. Risk factors for seropositivity were analysed using multivariate logistic regression.Findings: 410/5,698 (7·2%) staff tested positive for SARS-CoV-2 antibodies. Seroprevalence was higher in those working in designated COVID-19 areas compared with other areas (9·47% versus 6·16%) Healthcare assistants (aOR 2·06 [95%CI 1·14-3·71]; p =0·016) and domestic and portering staff (aOR 3·45 [95% CI 1·07-11·42]; p =0·039) had significantly higher seroprevalence than other staff groups after adjusting for age, sex, ethnicity and COVID-19 working location. Staff working in acute medicine and medical sub-specialities were also at higher risk (aOR 2·07 [95% CI 1·31-3·25]; p <0·002). Staff from Black, Asian and minority ethnic (BAME) backgrounds had an aOR of 1·65 (95% CI 1·32 – 2·07; p <0·001) compared to white staff; this increased risk was independent of COVID-19 area working. The only symptoms significantly associated with seropositivity in a multivariable model were loss of sense of taste or smell, fever and myalgia; 31% of staff testing positive reported no prior symptoms.Interpretation: Risk of SARS-CoV-2 infection amongst HCWs is heterogeneous and influenced by COVID-19 working location, role, age and ethnicity. Increased risk amongst BAME staff cannot be accounted for solely by occupational factors.Funding: Wellcome Trust, Addenbrookes Charitable Trust, National Institute for Health Research, Academy of Medical Sciences, the Health Foundation and the NIHR Cambridge Biomedical Research Centre.Declaration of Interests: None to declare.Ethics Approval Statement: Ethical approval for this study was granted by the East of England – Cambridge Central Research Ethics Committee (IRAS ID: 220277).


Subject(s)
COVID-19 , Fever , Musculoskeletal Pain
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.03.20220699

ABSTRACT

Background The COVID-19 pandemic continues to grow at an unprecedented rate. Healthcare workers (HCWs) are at higher risk of SARS-CoV-2 infection than the general population but risk factors for HCW infection are not well described. Methods We conducted a prospective sero-epidemiological study of HCWs at a UK teaching hospital using a SARS-CoV-2 immunoassay. Risk factors for seropositivity were analysed using multivariate logistic regression. Findings 410/5,698 (7.2%) staff tested positive for SARS-CoV-2 antibodies. Seroprevalence was higher in those working in designated COVID-19 areas compared with other areas (9.47% versus 6.16%) Healthcare assistants (aOR 2.06 [95%CI 1.14-3.71]; p=0.016) and domestic and portering staff (aOR 3.45 [95% CI 1.07-11.42]; p=0.039) had significantly higher seroprevalence than other staff groups after adjusting for age, sex, ethnicity and COVID-19 working location. Staff working in acute medicine and medical sub-specialities were also at higher risk (aOR 2.07 [95% CI 1.31-3.25]; p=0.002). Staff from Black, Asian and minority ethnic (BAME) backgrounds had an aOR of 1.65 (95% CI 1.32-2.07; p<0.0001) compared to white staff; this increased risk was independent of COVID-19 area working. The only symptoms significantly associated with seropositivity in a multivariable model were loss of sense of taste or smell, fever and myalgia; 31% of staff testing positive reported no prior symptoms. Interpretation Risk of SARS-CoV-2 infection amongst HCWs is heterogeneous and influenced by COVID-19 working location, role, age and ethnicity. Increased risk amongst BAME staff cannot be accounted for solely by occupational factors. Funding Wellcome Trust, Addenbrookes Charitable Trust, National Institute for Health Research, Academy of Medical Sciences, the Health Foundation and the NIHR Cambridge Biomedical Research Centre.


Subject(s)
COVID-19 , Fever , Myalgia , Infections
SELECTION OF CITATIONS
SEARCH DETAIL